Cystic Fibrosis and anaerobes

Dr Michael Tunney,
Clinical & Practice Research Group, School of Pharmacy,
Queen’s University Belfast.
Outline

• Background
 – CF: the disease
 – Recent developments in CF

• Detection of anaerobes in sputum from Cystic Fibrosis patients
 – Methods
 • Detection and isolation of anaerobes
 • Identification of aerobes and anaerobes
 – Results to Date
 – Future Work
CF: the disease

- Most common genetic disease in UK
 - 1 in 2500 live births
 - ~ 7500 patients

- Abnormal cystic fibrosis transmembrane regulator (CFTR) protein
 - Secretion of thickened mucus
 - Pulmonary infection
Pathogenic events in CF lung disease

- CF gene mutations
 - CFTR dysfunction
 - Ion transport abnormalities
 - Altered airway secretion

- Vicious Cycle:
 - Inflammation
 - Infection

- Tissue damage
Do CF Lungs Contain Anoxic Zones?

- Worlitzsch et al. (2002)
 - steep oxygen gradients in the mucus of CF patients
 - Proliferation of \textit{P. aeruginosa} → fully anoxic conditions

- Yoon et al. (2002)
 - \textit{P. aeruginosa} formed robust biofilms under anaerobic conditions
Significance of Anoxic Regions in the CF Lung

- Efficacy of antibiotics reduced under anaerobic conditions
- Susceptibility of *P. aeruginosa* may be altered under anaerobic conditions
- Anaerobic bacteria may be present and contributing to inflammatory process
Evidence of Anaerobes in Lung Infections

- 90% of the mucosal surface of the oropharynx is colonized with anaerobic bacteria
- Anaerobes have been identified in other pulmonary infections
- Small studies: culture detection
- Molecular detection
 - Terminal-restriction fragment length polymorphism profiling (T-RFLP)
Culture detection

- **Brook & Fink, 1983**
 - Transtrachael aspiration samples
 - Anaerobes present in 4/6 samples
- **Thomassen et al. 1984**
 - Sputa and thoractomy samples
 - Anaerobes present in 2/10 patients
 - Quantitative culture: 1×10^5-4×10^8 cfu/g
- **Jewes & Spencer, 1990**
 - Sputa samples
 - Anaerobes present in 9/21 samples
Culture detection

- *Prevotella* spp.
- *Veillonellae* spp.
- *Porphyromonas* spp.
- *Propionibacterium acnes*
- *Bacteroides* spp.
- *Peptostreptococcus anaerobius*
Detection of anaerobes in sputum from Cystic Fibrosis patients
Objectives

- To determine if the use of strict anaerobic bacteriological practice can improve the detection of anaerobic bacteria in CF pulmonary infection
Methods

• Sputum collection
• Samples processed under strict anaerobic conditions
• Strains isolated by aerobic and anaerobic culture
 – Aerobic: nutrient agar
 – Anaerobic: anaerobic blood agar, kanamycin-vancomycin laked blood agar & phenyl ethyl alcohol agar
SAMPLE PROCESSING

Sputum sample

Sputolysin treatment, serial dilution & plating

Anaerobic incubation

Different Colonies

Re-plate in duplicate

Growth

Aerobic Incubation

Store for further characterization

No growth

Obligate anaerobe

Aerobe or microaerophile

Aerobic incubation

Different Colonies

Re-plate

Growth

Aerobic incubation
Methods

• Anaerobes identified by colony PCR and sequencing of the 16S rRNA gene using universal primers (LiPuma et al. 1999)

• Aerobes first screened for *P. aeruginosa* using oprL PCR (Xu et al. 2004)

• Aerobes negative for oprL identified in the same manner as anaerobes
RESULTS
Sputum Sample Collection

- 64 sputum samples from 49 patients
 - 25 male, 24 female
 - mean age: 26.65 years
 - Range: 18-50 years

- 60 of these samples, representing 45 patients have been processed

- Anaerobes have been detected in
 - 42/60 samples (70%)
 - 33/45 patients (73%)
Sequential processing of samples

<table>
<thead>
<tr>
<th>Number of patients</th>
<th>Number of samples</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>4/4 same</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>2/3 same</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2/2 same</td>
</tr>
</tbody>
</table>
Summary of anaerobes detected

- 60 samples have yielded 105 potential anaerobes
- 45 have been identified via 16S rRNA sequencing

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevotella species</td>
<td>15</td>
</tr>
<tr>
<td>Veillonella species</td>
<td>9</td>
</tr>
<tr>
<td>Bifidobacterium species</td>
<td>2</td>
</tr>
<tr>
<td>Propionibacterium acnes</td>
<td>1</td>
</tr>
<tr>
<td>Actinomyces species</td>
<td>5</td>
</tr>
<tr>
<td>Streptococcus species</td>
<td>10</td>
</tr>
<tr>
<td>Gemella sanguinis</td>
<td>2</td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>1</td>
</tr>
</tbody>
</table>
Comparison of Viable Counts

<table>
<thead>
<tr>
<th>Patient</th>
<th>Aerobe/microaerophile (CFU/g)</th>
<th>Anaerobe (CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-1</td>
<td>P. aeruginosa 1.15x10^5</td>
<td>Prevotella spps 9x10^7</td>
</tr>
<tr>
<td>TH-3</td>
<td>P. aeruginosa 1x10^4</td>
<td>Prevotella spps 1x10^7</td>
</tr>
<tr>
<td></td>
<td>Rothia denticariosa 1.1x10^5</td>
<td></td>
</tr>
<tr>
<td>DM-11</td>
<td>P. aeruginosa 2x10^4</td>
<td>Prevotella spps 1.2x10^5</td>
</tr>
<tr>
<td></td>
<td>Rothia denticariosa 6.25x10^4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptococcus oralis 1x10^7</td>
<td></td>
</tr>
<tr>
<td>RC-17</td>
<td>P. aeruginosa 1.44x10^5</td>
<td>Bifidobacterium longum 1.2x10^7</td>
</tr>
<tr>
<td></td>
<td>Streptococcus salivarius 1x10^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bifidobacterium spps 3x10^6</td>
</tr>
<tr>
<td>LM-22</td>
<td>P. aeruginosa 7x10^5</td>
<td>Veilonella atypica 5x10^6</td>
</tr>
<tr>
<td></td>
<td>S. hominis 2x10^6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptococcus spp 3x10^7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemella sanguinis 2x10^7</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Viable Counts

<table>
<thead>
<tr>
<th>Patient</th>
<th>Aerobe/microaerophile (CFU/g)</th>
<th>Anaerobe (CFU/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RM 1st</td>
<td>P. aeruginosa 2.42x10⁵</td>
<td>Prevotella spps/salivae 1.06x10⁶</td>
</tr>
<tr>
<td></td>
<td>S. aureus 4.2x10⁴</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptococcus spp 7.2x10⁵</td>
<td></td>
</tr>
<tr>
<td>RM 2nd</td>
<td>P. aeruginosa 2.8x10⁴</td>
<td>Prevotella spps 1.06x10⁶</td>
</tr>
<tr>
<td></td>
<td>Micrococcus luteus 1.1x10⁴</td>
<td>Veillonella spps 2x10⁵</td>
</tr>
<tr>
<td>GD 1st</td>
<td>P. aeruginosa 1.2x10⁵</td>
<td>Prevotella melaninogenica 2x10⁵</td>
</tr>
<tr>
<td>GD 2nd</td>
<td>P. aeruginosa 4x10⁷</td>
<td>Prevotella spps 6x10⁶</td>
</tr>
<tr>
<td>CC 1st</td>
<td>P. aeruginosa 8.3x10³</td>
<td>Prevotella spps/salivae 1.06x10⁵</td>
</tr>
<tr>
<td></td>
<td>Rothia denticaariosa 2.1x10⁶</td>
<td></td>
</tr>
<tr>
<td>CC 2nd</td>
<td>P. aeruginosa 1.3x10⁵</td>
<td>Veillonella spps 1x10⁴</td>
</tr>
<tr>
<td></td>
<td>Rothia denticaariosa 4x10⁶</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gemella sanguinis 2x10⁵</td>
<td></td>
</tr>
</tbody>
</table>
Molecular detection

• Rogers et al 2004
 – Terminal-restriction fragment length polymorphism profiling (T-RFLP)
 – T-RF bands for
 • *P. melaninogenica*
 • *Prevotella sp. oral clone*
 • *V. atypica*
 • *S. hominis*
 • *Rothia spp.*
 • *Streptococcus spp.*

• Rogers et al 2005
 – Reverse Transcription (RT) T-RFLP
 – Metabolically active
Anaerobic isolates: Are they Significant?

- Are associated with the oropharynx
 - Oral cavity may be reservoir
 - Oral contaminants?????
- *Prevotella* spps have been shown to produce
 - β-lactamases
 - proteases
- Many have been implicated in other disease processes, particularly dental caries
Future Work: CF Trust Funded Study

- Anaerobe detection in patients with acute exacerbation of CF pulmonary infection
- 50 CF patients
 - Sample prior to and at end of antibiotic treatment
 - Culture detection, direct molecular screening
 - Examination of antibiotic susceptibility of anaerobic strains isolated
- 25 healthy volunteers
Acknowledgements

• Tyler Field
• Stuart Elborn
• Sheila Patrick
• Andrew McDowell