Pathway Reconstruction and Flux Quantification of Pentose Metabolism in Solventogenic Clostridia

Chen Yang

Key Laboratory of Synthetic Biology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences

> Clostridium XII Conference, Nottingham UK Sep. 10-12, 2012

Comparative Genomic Reconstruction of Sugar Utilization Pathways

Sugar Utilization Pathways: knowledge from model bacteria; variations

Clostridium Genus

Fermentative Butanol Production by Clostridia

- C. acetobutylicum C. beijerinckii
- Utilization of abundant and inexpensive lignocellulosic materials
- Pentose-rich hemicellulose
- A solvent for a wide variety of industrial applications
- A potential fuel

Xylose Utilization Pathway

Reconstruction of Xylose Utilization Pathway in *Clostridium*

Genome Context

Reconstruction of Xylose Utilization Pathway and Regulons

• Conserved chromosomal cluster: xyIA-II and xyIB

Reconstruction of XyIR Regulons

Reconstruction of Xylose Utilization Pathway and Regulons

Experimental Validation

Gene inactivation, genetic complementation in *E. coli*, enzymatic assay, EMSA

Reconstruction of Xylose Utilization Pathway and Regulons

Taxonomic group ^b	Xylose pathway			Xylose transporter		Regulators			Xyloside transport and degradation				
Organism	XyIA-I	XyIA-II*	XyIB	XyIFGH	XyIT*	XyIR rok	XyIR ^{Laci*}	XyIR ^{AraC}	XynB	XyIS	XynT*	Xyn ^{ABC*}	Xyn ^{pts*}
Clostridiales (5/16)													
Clostridium acetobutylicum		Ð	Ð		+	Ð			Ð	+	Ð		
Clostridium beijerincki	Ð	÷	Ð	Ð	Ð	÷		+	+ +	+	+	+	
Clostridium difficile	Ð		Ð			÷			+	÷	+		(+)
Clostridium phytofermentans	Ð	÷	Ð			÷			÷	+		+	
Alkaliphilus metalliredigens	Ð		Ð	÷		ŧ							
Thermoanaeobacterales (4/6)													
Moorella thermoacetica	+		+	+			+						
Thermoanaerobacter sp.X514	Ð		Ð	Ð		+							
T. pseudethanolicus	Ð		Ð			÷			÷			÷	
C. saccharolyticus		+	+	+		Ŧ			+	+		Ð	
Lactobacillales (6/41)													
Lactococcus lactis Il1403	+		+		+			+	+		+		
Lactococcus lactis cremoris	+		+					+	+				
Leuconostoc mesenteroides	Ð		Ð		Ð	÷			+	+	+		
Pediococcus pentosaceus	Ð		Ð			Ð				Ð	Ŧ		
Lactobacillus brevis	Ð		Ð		Ð	÷			÷	÷	()		
Enterococcus faecalis	Ð		Ð			Ð				Ð			Ð
Bacillales (9/57)													
Listeria welshimeri serovar	Ð		Ð			÷				Ð	Ŧ		
Oceanobacillus iheyensis	Ð		Ð			Ð			Ð			Ŧ	
G. thermodenitrificans	Ð		Ð			Ð			Ð			Ð	
Geobacillus kaustophilus	Ð		Ð	Ð		÷							
Bacillus clausii	Ð		Ð	Ð		+			+				
Bacillus cereus	Ð		Ð		Ð	Ð							
Bacillus halodurans	Ð		Ð			Ŧ			ŧ			Ŧ	
Bacillus licheniformis	Ð		Ð			Ŧ			+	÷		+	
Bacillus subtilis	Ð		Ð			÷			÷		÷		

Gu et al. BMC Genomics 2010, 11: 255.

Reconstruction of Xylose Utilization Pathway and Regulons

Reconstruction of Arabinose Utilization Pathway and Regulons

Experimental Validation of Predicted Ribulokinase

Experimental Characterization of Predicted AraR Regulon

Transcriptional analysis $AraR(0.5 \mu M)$ Specific competitor 1000 AraR-DNA wild type complex wild type, L-arabinose araR-inactivated mutant ■ araR-inactivated mutant, L-arabinose 100 **Relative expression (log10)** Free DNA \rightarrow araE araD araR AraR **D-Xylose** L-Arabinose **Specific competitor** AraR-DNA complex graterska gr Free DNA \rightarrow

Zhang et al. J. Bacteriol. 2012, 194: 1055-1064.

Electrophoretic mobility shift assay

ptk

araK

Pathway of Xylose Metabolism in *C. acetobutylicum*

¹³C-Based Metabolic Flux Analysis

¹³C Flux Analysis of Xylose Metabolism

Simulations of ¹³C Labeling Experiments

Xylose Catabolic Flux in C. acetobutylicum

Xylose Catabolic Flux in C. acetobutylicum

Liu et al. J. Bacteriol. 2012, In press.

Summary

A novel xylose isomerase (XylA-II) was identified and the gene coding for xylulokinase was unambiguously assigned in clostridia. A new XylR-binding DNA motif was identified in several *Clostridium* species.

A novel ribulokinase (AraK) was identified in clostridia. In addition to the genes involved in arabinose utilization and arabinoside degradation, extension of the AraR regulon to the pentose phosphate pathways genes in several *Clostridium* species was revealed.

The use of the phosphoketolase pathway for xylose catabolism in *C. acetobutylicum* was revealed. The split ratio of the phosphoketolase pathway to the pentose phosphate pathway was increased when cells were grown at a higher concentration of xylose.

THE TEAM

Microbial Metabolic Engineering &

Acknowledgements

Collaborators

<u>SIBS, CAS</u> Weihong Jiang Sheng Yang Yang Gu Burnham Institute for Medical Rsearch Dmitry Rodionov Andrei Osterman

Sponsors

 National Science Foundation of China (NSFC)
National Basic Research Program, Ministry Of Science & Technology (MOST) of China