Butanol Fermentation from Low-Value Sugar-Based Feedstocks by *Clostridia*

Ye Ni, Zhihao Sun

School of Biotechnology, Jiangnan University
Wuxi, China
2012.9.10
Current Status of Bio-butanol in China

- Market
- Factories
- Research

Studies on ABE fermentation in Our Lab

- Continuous Fermentation by *Clostridium saccharobutylicum*
During the period of 2005–2011, around 50% of total annual butanol consumption was imported, and butanol consumption increased rapidly at an average rate of 6-8% in China. (Data sources: http://chem.chem99.com/)
Butanol Price Trend in China

Butanol Price (Jilin Petrochemical)

Market: butanol price downturn continuation …
Factories

ABE Factories in China (data by 2012.8)

<table>
<thead>
<tr>
<th>Factory</th>
<th>Current Capacity (t/y)</th>
<th>Starting date</th>
<th>Current Status</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laihe Rockley Bio-Chemicals Ltd</td>
<td>150,000</td>
<td>2007.12.5</td>
<td>–</td>
<td>Songyuan, Jilin</td>
</tr>
<tr>
<td>Jilin Cathay Biotechnology Co. Ltd</td>
<td>100,000</td>
<td>2008.3.20</td>
<td>–</td>
<td>Jilin, Jilin</td>
</tr>
<tr>
<td>Guangxi Guiping JinYuan Alcohol Co. Ltd</td>
<td>30,000</td>
<td>2007.8</td>
<td>–</td>
<td>Guiping, Guangxi</td>
</tr>
<tr>
<td>Jimao yuan Biochemical Co. Ltd</td>
<td>40,000</td>
<td>2008.3.2</td>
<td>producing ethanol</td>
<td>Lianyungang, Jiangsu</td>
</tr>
<tr>
<td>Lianhai Biological Co. Ltd</td>
<td>50,000</td>
<td>2008.10</td>
<td>–</td>
<td>Haimen, Jiangsu</td>
</tr>
<tr>
<td>Lianyungang Union of Chemicals Co. Ltd</td>
<td>40,000</td>
<td>2010.4</td>
<td>producing ethanol</td>
<td>Lianyungang, Jiangsu</td>
</tr>
</tbody>
</table>

All ABE factories stopped production or switch to ethanol ...
Choice of Feedstocks for ABE Fermentation

Starchy materials:
- corn, cassava, wheat

Molasses:
- cane and beet molasses

Cellulosic biomasses:
- crop straw hydrolysate

Energy crops:
- sweet sorghum, jerusalem artichoke

Food materials

Substitutes
- Low-value sugar-based feedstocks

Cost issue
- “Food versus fuel” debate
Corn material

Profit from corn utilization in ABE fermentation in China

Utilization of corn components (per ton corn)

<table>
<thead>
<tr>
<th>Corn components</th>
<th>Output (Kg)</th>
<th>Price (Yuan/t)</th>
<th>Profits (Yuan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starch (10% water)</td>
<td>600</td>
<td>2860</td>
<td>1700</td>
</tr>
<tr>
<td>Fiber</td>
<td>115~120</td>
<td>1350</td>
<td>160~200</td>
</tr>
<tr>
<td>Embryo</td>
<td>50~60</td>
<td>4500</td>
<td>270</td>
</tr>
<tr>
<td>Protein</td>
<td>60</td>
<td>4300</td>
<td>250</td>
</tr>
<tr>
<td>CSL (45% water)</td>
<td>350</td>
<td>2420</td>
<td></td>
</tr>
</tbody>
</table>

*CSL: 10% solid content (3% protein), its profit was not considered.

- In 2012.2, corn price in Jilin is 2,030 yuan/t (14% water), including shipping;
- 4.5~4.7 t corn/t solvent, equal to a material cost of 10,080 yuan/t solvent;
- After utilization of corn component: 3,200 yuan/t solvent, the material cost: 7,000 yuan.
Corn Stover material

Corn Stover Butanol Biorefinery

Corn Cob/stover
 ↓
 Milling
 ↓
 Diluted acid pretreatment

Hydrolysates
 ↓
 Furfural removal
 ↓
 Acids removal
 ↓
 Preparation of cultural medium
 ↓
 Fermentation
 ↓
 Distillation
 ↓
 Biogas etc.

Solids residues
 ↓
 Lignin separation
 ↓
 Lignin solid residues
 ↓
 Cellulose
 ↓
 Butanol
 ↓
 Acetone
 ↓
 Ethanol
Corn Stover Butanol Biorefinery

Corn stover cost when construction: 200 yuan/t; when production: 500–700 yuan/t
Studies on ABE in Our Lab

Continuous Butanol Fermentation from Low-Value Sugar-Based Feedstocks by Clostridium saccharobutylicum DSM13864
Sugars utilization of various Clostridial strains in ABE fermentation

C. Beijerinckii DSM 6422, DSM 1739

C. Saccharobutylicum DSM 13864

C. Saccharoperbutylacetonicum DSM 2152

C. saccharobutylicum DSM 13864 could be used for ABE fermentation from cane molasses.

C. saccharobutylicum DSM 13864 could be used for ABE fermentation from lignocellulosic hydrolysates.
Scheme of 4-Stage Continuous ABE fermentation

Feeding tank Blending vessel Bioreactor 1 Bioreactor 2 Bioreactor 3 Bioreactor 4 Collection tank
Substrate: glucose

Strain: DSM 13864
Batch fermentation in 3-L bioreactor

Total solvent: 18.20 g/L (butanol 11.53 g/L)
Productivity: 0.379 g/L/h
Yield: 0.314 g ABE/g sugar
Fermentation time: 48 h
Substrate: glucose

Strain: DSM 13864
4-Stage continuous fermentation (D=0.03, 0.05, 0.1 h\(^{-1}\))

At D = 0.05 h\(^{-1}\):
Total solvent: 11.57 g/L (butanol 7.29 g/L); Productivity: 0.145 g/L/h

At D = 0.1 h\(^{-1}\):
Total solvent: 8.99 g/L (butanol 6.14 g/L); Productivity: 0.225 g/L/h
Substrate: cane molasses

Strain: DSM 13864
Batch fermentation in 5-L bioreactor

Total solvent: 17.88 g/L (butanol 11.86 g/L)
Productivity: 0.50 g/L/h
Yield: 0.33 g ABE/g sugar
Fermentation time: 36 h
Substrate: cane molasses

Strain: DSM 13864
4-Stage continuous fermentation

At D = 0.1 h⁻¹ (30–130 h)
Total solvent: 11.74 g/L (butanol 7.18 g/L); Productivity: 0.294 g/L/h
Fermentation time: 221 h

At D = 0.15 h⁻¹ (30–100 h)
Total solvent: 13.75 g/L (butanol 8.37 g/L); Productivity: 0.439 g/L/h
Fermentation time: 170 h
Pretreatment conditions of various straw

<table>
<thead>
<tr>
<th>Straw types</th>
<th>g straw/L liquid</th>
<th>Glucose g/L</th>
<th>Xylose g/L</th>
<th>Arabinose g/L</th>
<th>Total sugar g/L</th>
<th>Enzymolysis ratio %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn straw</td>
<td>60</td>
<td>33.34</td>
<td>11.16</td>
<td>1.04</td>
<td>45.54</td>
<td>72.41</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>42.88</td>
<td>14.32</td>
<td>1.33</td>
<td>58.52</td>
<td>80.51</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>48.52</td>
<td>16.18</td>
<td>1.59</td>
<td>66.29</td>
<td>80.54</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>57.19</td>
<td>18.84</td>
<td>2.03</td>
<td>78.06</td>
<td>85.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>37.09</td>
<td>11.70</td>
<td>49.43</td>
<td>78.59</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>44.00</td>
<td>13.63</td>
<td>0.68</td>
<td>58.30</td>
<td>80.21</td>
</tr>
<tr>
<td>Rice straw</td>
<td>80</td>
<td>49.53</td>
<td>14.71</td>
<td>0.59</td>
<td>64.84</td>
<td>78.78</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>53.83</td>
<td>17.15</td>
<td>1.59</td>
<td>72.56</td>
<td>79.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60</td>
<td>38.34</td>
<td>12.50</td>
<td>51.27</td>
<td>81.52</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>45.43</td>
<td>15.74</td>
<td>0.78</td>
<td>61.96</td>
<td>85.23</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>80</td>
<td>42.02</td>
<td>14.74</td>
<td>0.83</td>
<td>57.58</td>
<td>69.96</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>53.16</td>
<td>18.79</td>
<td>1.17</td>
<td>73.12</td>
<td>79.70</td>
</tr>
</tbody>
</table>

- **Alkaline Pretreatment**: 1% NaOH, 120 °C for 2 h
- **Cellulase hydrolysis**: 20–30 FPIU/g straw, pH 4.8 and 50 °C for 40 h
Substrate: corn stover hydrolyzate

Strain: DSM 13864
Batch fermentation in 3-L bioreactor

Total solvent: 16.1 g/L (butanol 10.59 g/L)
Productivity: 0.40 g/L/h
Yield: 0.33 g ABE/g sugar
Fermentation time: 40 h
Substrate: corn stover hydrolyzate

5-stage temperature-shifting continuous fermentation in 500-mL tanks
(Stage 1, 2: 37 °C, Stage 3–5: 30 °C)

Total solvent: 12.28 g/L (butanol 8.50 g/L) after 80 h
Productivity: 0.25 g/L/h
Yield: 0.33 g ABE/g sugar
Fermentation time: 270 h (D=0.1 h⁻¹)
Substrate: corn stover hydrolyzate

Strain: DSM 13864
4-Stage Continuous fermentation

At $D = 0.1 \, h^{-1}$
Total solvent: 13.44 g/L (butanol 9.29 g/L); Productivity: 0.336 g/L/h
Fermentation time: 150 h

At $D = 0.15 \, h^{-1}$:
Total solvent: 11.43 g/L (butanol 7.81 g/L); Productivity: 0.429 g/L/h
Fermentation time: 220 h
Substrate: cassava

Strain: *C. acetobutylicum* A
Batch fermentation in 3-L bioreactor

Total solvent: 20.9 g/L (butanol 12.0 g/L)
Productivity: 0.211 g/L/h
Yield: 0.33 g ABE/g sugar
Fermentation time: 96 h
Substrate: cassava

Strain: *C. acetobutylicum* A

4-Stage continuous fermentation in 3-L bioreactor

Total solvent: 22.8 g/L (butanol 12.38 g/L)
Productivity: 0.57 g/L/h
Yield: 0.33 g ABE/g sugar
Fermentation time: 96 h (D=0.1 h⁻¹)
Batch and Continuous ABE fermentation

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Strain</th>
<th>Substrate</th>
<th>Dilution rate (h(^{-1}))</th>
<th>Productivity (g/L/h)</th>
<th>Total solvent (g/L)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch Fermentation</td>
<td>C. beijerinckii P260</td>
<td>Corn stover</td>
<td>0.31</td>
<td>26.27</td>
<td></td>
<td>Qureshi et al. 2010</td>
</tr>
<tr>
<td></td>
<td>C. acetobutylicum 2N</td>
<td>Beet molasses</td>
<td>0.34</td>
<td>16.32</td>
<td></td>
<td>Fan et al. 2010</td>
</tr>
<tr>
<td></td>
<td>C. saccharobutylicum</td>
<td>Cane molasses</td>
<td>0.50</td>
<td>17.88</td>
<td></td>
<td>Ni et al. 2012</td>
</tr>
<tr>
<td></td>
<td>C. acetobutylicum XY16</td>
<td>Glucose</td>
<td>0.63</td>
<td>20.30</td>
<td></td>
<td>Guo et al. 2012</td>
</tr>
<tr>
<td>Continuous fermentation</td>
<td>C. beijerinckii BA101</td>
<td>Glucose</td>
<td>2.0</td>
<td>15.80</td>
<td>7.9</td>
<td>Qureshi et al. 2000</td>
</tr>
<tr>
<td>Immobilized cell</td>
<td>C. beijerinckii ATCC 55025</td>
<td>Glucose</td>
<td>0.2</td>
<td>1.76</td>
<td>8.99</td>
<td>Zhang et al. 2009</td>
</tr>
<tr>
<td>Continuous fermentation</td>
<td>C. pasteurianum ATCC 6103</td>
<td>Glycerol</td>
<td>0.9</td>
<td>8.3</td>
<td>9.2</td>
<td>Malaviya et al. 2012</td>
</tr>
<tr>
<td>Membrane cell bioreactor</td>
<td>C. saccharoperbutylacetonicum N1-4</td>
<td>Glucose</td>
<td>0.11</td>
<td>7.55</td>
<td>8.58</td>
<td>Tashiro et al. 2005</td>
</tr>
<tr>
<td>Continuous fermentation</td>
<td>C. saccharobutylicum DSM 13864</td>
<td>Gelatinised sago starch</td>
<td>0.05</td>
<td>0.46</td>
<td>9.10</td>
<td>Liew et al. 2006</td>
</tr>
<tr>
<td>Free cell</td>
<td>C. acetobutylicum BCRC 10639</td>
<td>Glucose</td>
<td>0.054</td>
<td>0.37</td>
<td>6.85</td>
<td>Yen et al. 2011</td>
</tr>
<tr>
<td></td>
<td>C. saccharobutylicum DSM 13864</td>
<td>Corn stover hydrolysate</td>
<td>0.1</td>
<td>0.336</td>
<td>13.44</td>
<td>Ni et al. Unpublished</td>
</tr>
</tbody>
</table>
Conclusions

- Low-value sugar-based feedstock was utilized in batch and continuous ABE fermentation, including: cane molasses, corn stover hydrolyzate, etc.

- Using cane molasses, the ABE fermentation could be steadily operated for over 100 h at D=0.15 h⁻¹, the average total solvent of 13.75 g/L (butanol 8.37 g/L); and productivity of 0.439 g/L/h were obtained in a 4-stage continuous fermentation.

- Corn stover hydrolysate was prepared using alkaline pretreatment and enzyme hydrolysis. In a 4-stage continuous fermentation, the process was operated for 220 h at D=0.15 h⁻¹, the average solvent was 11.43 g/L (butanol 7.81 g/L), and the average solvent productivity was 0.429 g/L/h.
Acknowledgement

Graduate students:
Yun Wang
Ziyi Xia
Gang Song
Shan Sun
Thank you!