

Glucose sensing in the solventogenic clostridia

Wilfrid J Mitchell

Heriot-Watt University, Edinburgh

"The ideal microorganism for biofuel production will possess high substrate utilization and processing capacities, fast and deregulated pathways for sugar transport, good tolerance to inhibitors and product, and high metabolic fluxes and will produce a single fermentation product"

> Alper & Stephanopoulos Nature Reviews Microbiology 7, 715-723 (2009)

Bacteria control metabolic activities in response to the nutrient status of the environment - not according to the requirements of a biotechnologist

The PTS as an environmental sensor

Diauxic growth of *C. acetobutylicum* on glucose and lactose

HERIOT

Putative regulatory region of the *C. acetobutylicum lac* operon

PTS-dependent induction and repression of individual operons

Antitermination in the *C. acetobutylicum* sucrose operon

Understanding CCR in clostridia

CCR by glucose is dependent on uptake and phosphorylation by the PTS

Manipulating CCR is dependent on understanding:

- the role of the PTS in sensing and uptake of glucose
- the signal transduction pathway

Phosphotransferases of *C. acetobutylicum* ATCC 824

<u>Substrate</u>	
mannitol	
fructose	
ß-glucoside (cellobiose	?)
sucrose	
maltose	
glucose	GlcG
N-acetylglucosamine	
ß-glucoside	
fructose/mannose?	
lactose	
galactose	
α-glucoside	
??	

PTS activity in wild-type and glcG mutant

glucose phosphorylation

methyl- α -glucoside phosphorylation

Fermentation profile of wild-type vs glcG mutant

 glucose fermented at a similar rate in both strains

HERIO

- arabinose and xylose fermented more efficiently in the glcG mutant compared to wild-type
- considerable amount of xylose remaining at the end of the fermentation

C. beijerinckii glucose family phosphotransferases

NAG PTS activity in *C. beijerinckii g*rown on NAG and glucose

Cloning of C. beijerinckii nag genes

MacConkey + NAG

Construction of an artifical nag operon

Complementation of *E. coli nagE* mutant by pUC18-*nag*

MacConkey agar + NAG

Complementation of *E. coli* ZSC113 by pUC18-*nag*

pUC18

MacConkey agar + glucose

pUC18-nag

MacConkey agar plus mannose

pUC18-nag

Induction of *nag* gene expression in *C. beijerinckii*

Cloning of Cbei 0751

Complementation of *E. coli* ZSC113 for glucose fermentation

MacConkey agar + glucose

Glucose PTS activity in cell extracts

Distinctly Ambitious www.hw.ac.uk

HERIOT

Inhibition of glucose phosphorylation by cell extracts

Mitchell et al (1991) Appl. Environ. Microbiol. 57, 2534-2539.

Conclusions:

- cbei4532/4533 encode a PTS that translocates both N-acetylglucosamine and glucose
- cbei0571 encodes a PTS that translocates both glucose and mannose
- both phosphotransferase systems can contribute to glucose sensing and catabolite repression

Acknowledgements:

Heriot-Watt University:

Naief Al Makishah Mohemed Essalem Yang Yu

Edinburgh Napier University: Martin Tangney

Shanghai Institutes for Biological Sciences:

Han Xiao Yang Gu Yuanyuan Ning Yunliu Yang Weihong Jiang Sheng Yang

Microbiology

