

Flow Cytometry Analysis of Solventogenic Clostridia

Petra Patakova

Department of Biotechnology ICT Prague, Czech Republic E-mail: petra.patakova@vscht.cz

Why Flow Cytometry ?

FC = simultaneous multiparametric analysis of the physical and chemical characteristics of single cells

routinely used in medicine (in 2009 only 8% of FC publications dealing with microorganisms)

Solventogenic clostridia

-only few parameters followed during ABE process
- cell population changes during process, becomes heterogenic

FC – useful tool in ABE fermentation

How FC works?

FC outputs

Our favourite Clostridia

FC analysis of native population - spore number estimation (*C.beijerinckii*)

non-sporulating gate R1 – all cells

FSC

sporulating gate R1 – invisible gate P5 - spores

formation of cell aggregates- gate P7

Viability estimation by fluorescent analysis

Fluorescent probe	Application	Principle	fluorescence
Propidium iodide (PI)	Membrane integrity	Nucleic acids in cells with permeabilized membrane	Red
Sytox ®	Membrane integrity	Nucleic acids in cells with permeabilized membrane	Green, red, orange, blue
Carboxy fluorescein diacetate (CFDA)	Esterase activity (intracellular pH)	Non-fluorescent stain is converted to fluorescent product	green
Bis-oxonol (BOX)	Transmembrane potential	Anionic probe cumulated by cells with depolarized membranes	green

Development of method for estimation of metabolically active cells – *C.tetanomorphum,* propidium iodide

Exponential growth phase

Stationary growth phase

Monitoring metabolic activity of *C.tetanomorphum*

Development of method for estimation of metabolically active cells

Bisoxonol (BOX) was chosen from seven selected fluorescent probes, BOX stains depolarized (non-viable) cells with destroyed membrane potencial

C.pasteurianum active cells

C.pasteurianum fixed (non-viable) cells

Patakova et al., 2011, Biofuels/book 4, (2011), InTech Open Access Publisher

Dot-plot diagrams after BOX labelling of *C.pasteurianum* populations of active (1), fixed (2) and mixture of active and fixed cells (3)

Patakova et al., 2011, Biofuels/book 4, (2011), InTech Open Access Publisher

GlucoseViabilityOD

Estimation of metabolically active cells in *C.pasteurianum* population during batch cultivation

Patakova et al., 2011, Biofuels/book 4, (2011), InTech Open Access Publisher

Use of combination of dyes (propidium iodide (PI) + carboxy fluorescein diacetate(CFDA))

PI - membrane integrity probe, stains non-viable cells CFDA labelling - esterases activity of cells - originally nonfluorescent stain converted to fluorescent product

PI stained (red) cells - non-viable, CFDA stained (green) cells – metabolically active

Combination of PI + CFDA for monitoring of metabolic activity of *C.beijerinckii* cells during batch fermentation

High proportion of metabolically active cells

Low proportion of metabolically active cells

Fluorescent alternative of Gram staining (hexidium iodide + SYTO13)

Goals – to recognize metabolic phase, to monitor physiological state of

bacteria

Gram positive

Gram negative

Bacillus megatherium

Escherichia coli

Clostridium pasteurianum

Linhova et al. (2010), Folia Microbiol. 55, 340

Batch fermentation with FC analysis (Gram staining) C.pasteurianum

Linhova et al. (2010), Folia Microbiol. 55, 340

FC enables interesting insight to clostridial population

but

© P. Vykydalová, 2012

✓ Staining protocol must be tailored for particular solventogenic *Clostridium strains*.

✓ FC results must be evaluated carefully together with fluorescent microscopy and other characteristics.

Thanks to my collegues:

Department of Biotechnology:

Michaela Linhova, Mojmir Rychtera, Jakub Lipovsky, Barbora Branska, Leona Paulova, Petr Fribert, Hana Cizkova, Karel Melzoch

Department of Petroleum Technology and Alternative Fuels: Milan Pospisil, Pavel Simacek, Zlata Muzikova, Daniel Maxa, Gustav Sebor

Research Institute of Organic Chemistry (Pardubice, Czech Republic): Lubos Visek, Petr Truhlar, Pavel Balak

Acknowledgement for financial support:

The research was performed thanks to financial support of the project TIP No. FR-TI1/218 of the Ministry of Industry and Trade of the Czech Republic.

Thank you for your attention

petra.patakova@vscht.cz

Clostridium beijerinckii cells accumulating granulose